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ABSTRACT
Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the
early Universe such as the rates of stellar collapsars and mergers, the metallicity content,
constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection
of high-z candidates from GRB samples reported in real time by dedicated space missions such
as Swift is the key to identifying the most distant bursts before the optical afterglow becomes
too dim to warrant a good spectrum. Here, we introduce ‘machine-z’, a redshift prediction
algorithm and a ‘high-z’ classifier for Swift GRBs based on machine learning. Our method
relies exclusively on canonical data commonly available within the first few hours after the
GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized
ensemble of decision trees (random forest) to perform both regression and classification.
Cross-validated performance studies show that the correlation coefficient between machine-z
predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can
achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of
20 per cent. With 40 per cent false positive rate the classifier can achieve ∼100 per cent recall.
The most reliable selection of high-redshift GRBs is obtained by combining predictions from
both the high-z classifier and the machine-z regressor.

Key words: gamma-ray burst: general.

1 IN T RO D U C T I O N

Gamma-ray bursts (GRBs) are often characterized as the most en-
ergetic electromagnetic explosions since the beginning of the Uni-
verse. Their optical afterglows are in principle detectable out to red-
shift z > 10 (Lamb & Reichart 2000; Mesler et al. 2014). Therefore,
studies of distant GRBs can probe the physics of the early Universe
including the re-ionization, the evolution of star formation, and the
process of metal enrichment (Lamb & Reichart 2000; Kawai et al.
2006; Totani et al. 2006). High-redshift GRBs can be used to pin-
point and characterize the faint galaxies that supplied most of the re-
ionization photons and to constrain the re-ionization redshift (Ioka
2003; Totani et al. 2006; Wang et al. 2012). Multiwavelength studies
of distant GRB afterglows can provide new information about the
metal and dust content of these objects (Cusumano et al. 2006; Frail
et al. 2006; Mesler et al. 2014). This in turn offers a unique method
to understand the metal enrichment history of sources during the re-
ionization epoch. While most studies of the re-ionization epoch are
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based on observations of quasars, high-z GRBs have a number of
significant advantages over quasars due to their unique characteris-
tics. GRB afterglows are exceptionally bright and provide plenty of
photons for sensitive spectroscopy. They have simple, easy to model
power-law spectra dominated by the continuum emission that are
well suited for detecting absorption signatures of the intergalactic
medium. Additionally, the neighbourhoods of GRB progenitors are
relatively ‘clean’ compared to quasars, which are often contami-
nated by continuous ejection of material from the central engine.

The Swift Gamma-Ray Burst Mission (Gehrels et al. 2004) has
proven to be effective in detecting very high redshift GRBs. The
most distant spectroscopically confirmed GRB on record is GRB
090423 with z = 8.2 (Salvaterra et al. 2009; Tanvir et al. 2009).1

The highest photometrically measured burst is GRB 090429B with
a redshift of 9.4 (Cucchiara et al. 2011). There is now a handful
of spectroscopically confirmed GRBs with z > 5. The main chal-
lenge in this work is to reliably identify high-redshift bursts suitable
for detailed spectroscopic follow-up before the optical emission

1 GRB 120923A may have slightly higher redshift. A preliminary analysis
of the photometric data indicates z ∼ 8.5 (Tanvir 2013).
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Table 1. Standard features used for training classification and regression algorithms. The features are derived
from measurements by all three Swift instruments: BAT, XRT, and UVOT.

Item Feature Units Instrument

1 T90 s BAT
2 Fluence (15–150 keV) 10−7 erg cm−2 BAT
3 1-s peak photon flux (15–150 keV) ph cm−2 s−1 BAT
4 Photon index None BAT
5 Fit type (CPL – Cutoff power law, PL – Power law) CPL = 1, PL = 0 BAT
6 Early flux (0.3–10 keV) 10−11 erg cm−2 s−1 XRT
7 11 hour flux (0.3–10 keV) 10−11 erg cm−2 s−1 XRT
8 24 hour flux (0.3–10 keV) 10−11 erg cm−2 s−1 XRT
9 Initial temporal index None XRT

10 Spectral index (�) None XRT
11 Column density (NH) 1021 cm−2 XRT
12 V mag/limit value mag UVOT
13 V value type mag = 1, limit = 0 UVOT
14 B mag/limit value mag UVOT
15 B value type mag = 1, limit = 0 UVOT
16 U mag/limit value mag UVOT
17 U value type mag = 1, limit = 0 UVOT
18 UVW1 mag/limit value mag UVOT
19 UVW1 value type mag = 1, limit = 0 UVOT
20 UVM2 mag/limit value mag UVOT
21 UVM2 value type mag = 1, limit = 0 UVOT
22 UVW2 mag/limit value mag UVOT
23 UVW2 value type mag = 1, limit = 0 UVOT
24 White mag/limit value mag UVOT
25 White value type mag = 1, limit = 0 UVOT

fades away. Decisions to use precious observing time on large tele-
scopes must be made within the first hours or even minutes after
the burst based on limited information. Previous attempts to screen
high-z GRBs using promptly available high-energy data (Campana
et al. 2007; Salvaterra et al. 2007; Ukwatta et al. 2008, 2009; Koen
2009, 2010; Morgan et al. 2012), while showing some promise,
lacked the accuracy necessary to facilitate a reliable follow-up
programme. As a result, they were never widely adopted by
observers.

The main difficulty lies in extracting numerous weak correlations
from readily available high-dimensional data and efficiently com-
bining the information they contain. A modern approach based
on machine learning is ideal for this purpose. Starting from a
catalogue of GRBs with known redshifts, we can use supervised
learning to ‘train’ algorithms that effectively encode the relation-
ship between input data and output labels. Classification algorithms
deal with predicting discrete labels (in this case high-z versus low-
z), while regression algorithms predict continuous labels (here the
redshift value). Both types of models are supported by the ran-
dom forest (RF) algorithm that in recent years has emerged as
one of the best performing machine-learning tools in observational
astrophysics.

In this paper, we present a rapid machine-learned redshift esti-
mator called machine-z and a high-z classifier for GRBs detected
by Swift. Both machine-z and high-z are developed independently
and each tool may be used to reinforce conclusions from the other.
In Section 2, we describe the input data and the method. Our high-z
classifier is developed in Section 3 and the machine-z indicator is
developed in Section 4. In Section 5, we compare our algorithms
and results with previous work and evaluate the performance of our
new tools using a sample of recently detected bursts that are not
included in the training catalogue. In Section 6, we summarize the
results.

2 M E T H O D O L O G Y

2.1 GRB sample

Our sample consists of 284 Swift GRBs with spectroscopic redshift
measurements.2 The Swift mission payload consists of three major
instruments: the Burst Alert Telescope (BAT), the X-ray Telescope
(XRT) and the UV Optical Telescope (UVOT; Gehrels et al. 2004).
BAT is a soft gamma-ray wide field instrument sensitive to photons
in the energy range 15–350 keV and it is the GRB discovery instru-
ment. Once BAT discovered a GRB and determined its sky position,
the Swift satellite slews to the location of the burst so that the narrow
field instruments XRT and UVOT can quickly start observing the
afterglow. In order to provide a rapid machine-z redshift and high-z
classification, we limited this study to readily available measure-
ments from all three Swift instruments. These measurements were
adopted as numerical features for classification and regression, and
are listed in Table 1.

In total we considered 25 features. The features generally cap-
ture the timing and spectral properties of the prompt and afterglow
emission from the burst. Some measurements are encoded as two
separate features to ensure that all available information is included.
For example, the prompt emission recorded by BAT is fitted using
either a power law (PL) model or a cutoff power law (CPL) model,
depending on which one provides a better fit. The power-law index
is an important feature, but the existence of a high-energy cutoff
provides additional information and is included as a separate fea-
ture FitType that encodes the best-fitting model (0 for PL and 1
for CPL). Similarly, UVOT magnitudes are reported as either de-
tections or upper limits. A numerical flag similar to FitType is

2 The measurements are taken from the Swift online catalogue at
http://swift.gsfc.nasa.gov/archive/grb_table/ maintained by J. D. Myers.
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Figure 1. Redshift distribution for a sample of 284 Swift bursts.

introduced to include this information for each photometric band of
UVOT.

The sample includes GRBs discovered between 2005 and the end
of 2014. Fig. 1 shows the redshift distribution of all bursts in the
sample. The lowest redshift value is 0.033 and the highest is 8.26.
We adopt z = 4 as the threshold between low-redshift and high-
redshift bursts. Out of 284 GRBs in the sample 25 or ∼9 per cent
are high-redshift according to this definition.

2.2 Machine-learning algorithm

2.2.1 Random forests

The RF algorithm (Breiman 2001) has been shown to provide su-
perior performance on many classification problems (Caruana &
Niculescu-Mizil 2006; du Buisson et al. 2015; D’Isanto et al. 2016).
Over the past few years the method found several interesting appli-
cations in observational astrophysics including selection of explo-
sive transients in imaging data (Goldstein et al. 2015; Wright et al.
2015), classification of X-ray sources (Farrell, Murphy & Lo 2015),
and redshift prediction (Carliles et al. 2010; Morgan et al. 2012). RF
has the ability to select useful features, relatively immune to data
overfitting, can handle non-linear relationships, and provide prob-
abilistic outputs (see Morgan et al. 2012 and references therein).
Given input training data, the algorithm creates a large number of
decorrelated binary decision trees. Each tree in the forest is grown
by splitting the portion of the training data associated with a par-
ticular parent node between two child nodes according to the value
of one or more features. Splits are chosen to maximize node pu-
rity (classification) or minimize variance (regression). The process
starts from the root node that holds the entire data set and continues
until the size of the leaf node falls below a specified threshold. Ran-
domness enters in two distinct ways. A new bootstrap sub-sample is
drawn from the original training sample to train the next tree. Then
a random subset of all available features is selected to optimize each
split. The size of the random subset is specified by the user.

Prediction for a single tree is accomplished by propagating a pre-
viously unseen feature vector starting from the root and until a leaf
node is reached. The predicted label is typically a majority class of
the leaf node (classification) or a numerical average (regression).
The results from all trees in the forest are then combined to com-
pute the posterior probability of possible outcomes and the final

prediction. Typically the majority vote is adopted for classification
and the mean for regression. All results described in this paper were
obtained using the PYTHON implementation of RF distributed with
the SCIKIT-LEARN package3 (Pedregosa et al. 2011).

2.2.2 Missing features

Missing features are common in real world data and our GRB sam-
ple is no exception. A popular approach to handle missing input
values is by imputation i.e. assigning values estimated from the dis-
tribution of all remaining instances. The method works well unless
missing values carry a special meaning in a given particular prob-
lem domain. In our input GRB catalogue, some features could not
be extracted due to low signal to noise ratio of the original data or
a non-detection in a particular photometric band. Both occurrences
are actually expected to be correlated with redshift (distance) and
are therefore examples of informative missing features. Blue filter
‘dropouts’ are especially interesting because they are often indica-
tive of high redshift. In order to preserve all available information
about the redshift we assigned all missing features to −1000. The
effect on performance is negligible as long as the plug-in value is
well outside the normal range for all features. Decision trees are
generally very good in utilizing such special values if the missing
features are in fact informative or marginalizing them out if they
are not.

2.2.3 Data imbalance

Another common problem when searching for rare objects of inter-
est is highly uneven distribution of training data between classes.
The redshift distribution in Fig. 1 represents competition between
survey volume growing rapidly with distance and decreasing ef-
ficiency of detecting more distant bursts. The input catalogue for
our study is quite unbalanced with fewer than 10 per cent of GRBs
at z > 4. A low fraction of high-redshift bursts in the training
sample will typically result in a tendency to classify all bursts as
low-redshift as the algorithm attempts to minimize the overall error
rate. This imbalance will result in poor performance of the classi-
fier on new data. One possible solution is to assign higher weights
to high-z bursts during training. However, the price is often ad-
ditional complexity and a tendency for overfitting. It is not clear
at this point what is the optimal way to introduce weights in RF
and almost certainly the answer depends on the problem at hand.
A preliminary investigation of the redshift bias discussed in Sec-
tion 4.3 indicates that the underlying cause is imbalanced training
data combined with noisy features in a significant fraction of the
sample. A detailed treatment of these intricate effects warrants a
separate investigation and will be presented elsewhere.

3 H I G H - z CLASSI FI CATI ON

3.1 Receiver Operating Characteristic (ROC) curve

ROC curve is a convenient way to track performance and com-
pare classifiers and/or feature sets. We compute this curve using
randomized 10-fold cross-validation (train on 90 per cent of the
sample and test on 10 per cent). A single point on the ROC curve
corresponds to an average of 100 independent cross-validation runs
for a fixed threshold applied to the probability of the burst having a

3 http://scikit-learn.org

MNRAS 458, 3821–3829 (2016)

 at N
A

SA
 G

oddard Space Flight C
tr on June 24, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://scikit-learn.org
http://mnras.oxfordjournals.org/


3824 T. N. Ukwatta, P. R. Woźniak and N. Gehrels

Table 2. Parameter grid used to approximately optimize al-
gorithm learning.

Parameter Values

ntrees 50, 100, 200, 300, 400, 500
nodesize 1, 2, 5, 8, 10, 12, 15, 18, 20
m 2, 5, 8, 10, 12, 15, 18, 20, 22, 25

high redshift. The curve is traced by varying the threshold between
0 and 1 (see Fig. 3 for an example). A perfect classifier has zero
false positive rate and 100 per cent efficiency (upper-left corner of
the diagram). Fast rising ROC curves are generally better than a
slow rising ones. The area under the curve can be used as a rough
measure of classification performance. An ideal classifier has the
area of 1, while completely random selection on average yields half
of the total area of the diagram.

3.2 Tuning the classifier

RF classifiers take several parameters that can be tuned to improve
performance. Among those the most important are the number of
trees in the forest (ntrees), the minimum size of the leaf node (node-
size), and the number of randomly selected features that will be
used to optimize node splits (m). In order to approximately opti-
mize the high-z classifier, we performed a simple parameter search
over a grid given in Table 2 and selected a set of parameters with
the largest area under the ROC curve. This results in a forest of 300
trees with at least 12 training samples per node and m = 25 random
features per split that delivers an ROC curve with an area of 0.87.
The fact that m = 25 is preferred means that the best results are
obtained with a large degree of randomness injected during con-
struction of individual trees (all available features are randomized).

The area under the ROC curve is somewhat insensitive to the exact
combination of parameters.

3.3 Classification feature importance

While RF is relatively immune to correlated and uninformative
features, it is still beneficial to investigate the relative importance
of input features on performance. We start with a pool of avail-
able features that initially contains all features in Table 1. The
first most informative feature is selected to maximize classifica-
tion performance (area under ROC curve) using only one feature
at a time from the pool of N available features. The next best fea-
ture is selected after looping over N − 1 features remaining in the
pool and maximizing classification performance using two features.
The process continues until the pool of available features is empty.
We use parameter values from Section 3.2, i.e. ntrees = 300 and
nodesize = 12, except m which cannot be larger than the number
of features selected for a given iteration. The relative importance of
all 25 classification features is shown in Fig. 2. As more features
are included in training, the area under the ROC curve increases
rapidly with a maximum value of 0.89 around 8th feature followed
by a gradual decrease. It is interesting to note that the eight best
features selected in this way include information from all three Swift
instruments. The absence of the total burst duration (BAT T90) on
this list is somewhat surprising and may be attributed to a large
intrinsic spread of burst durations that dominates the influence of
time dilation on this time-scale.

The ROC curve of the final high-z classifier trained using
the eight best features is shown in Fig. 3. The curve shows a
steep rise and reaches 100 per cent recall at about 40 per cent
false positive rate. We can reduce the false positive rate by half
by changing the probability threshold and accepting 80 per cent
recall.

Figure 2. Relative importance of high-z classification features. The area under the ROC curve is shown as a function of the next best feature starting from the
single best feature at the bottom of the plot. Features selected for the final high-z classifier are shown in red.
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Figure 3. ROC curve for high-z classifier using the best eight features
identified in Fig. 2.

3.4 Machine-learned scoring

The ROC curve is not the only way to measure the performance
of selecting high-redshift GRBs. Morgan et al. (2012) introduced
a scoring method suitable for scheduling follow-up observations
constrained by limited resources (telescope time). The idea is to
compare high-z probabilities of all bursts in the training sample
to that of the new event under consideration. The new event is
assigned a rank n, with n − 1 previously seen events having a
higher probability of being high-z compared to the new event. The
learned follow-up rank of the new event is Q = n/(N + 1). This
formulation supports ‘go or no go’ decisions for newly detected
bursts, given the fraction F of all GRBs that can be followed up
with the currently available resources. If Q < F the event should
be observed. Otherwise it makes more sense to wait for a better
candidate. The algorithm automatically adapts to changes in the
redshift distribution of the input GRB sample and the amount of
telescope time that can be devoted to follow-up.

We tested the above approach by simulating follow-up deci-
sions for bursts on our training sample using a randomized cross-
validation procedure described in Section 3. The Q scores were
calculated using approximately optimized input parameters and
features found in Sections 3.2 and 3.3. The effectiveness of this
hypothetical observing campaign as a function of the requested
follow-up fraction F is shown in Fig. 4. The top panel (a) shows
that the fraction of bursts recommended for follow-up by the al-
gorithm (Q < F) closely tracks the requested value F. The middle
panel (b) shows the purity of the follow-up sample, i.e. the num-
ber of actual high-z GRBs divided by the total number of selected
high-z candidates. Ideally, the purity would be close to 100 per cent
when the follow-up resources are limited (low F), as shown by the
green line. The bottom panel (c) shows the efficiency of selecting
high-z GRBs (the fraction of all high-z bursts that were actually
observed). Again, perfect classification performance is shown by
the green line.

From Fig. 4 it is clear that the classifier can identify high-redshift
bursts with a high probability, especially when follow-up resources
are very limited (low F). In other words, the purity is highest when
very few bursts can be followed up and therefore reliable predictions
matter most. At 1 per cent follow-up fraction the purity exceeds
80 per cent. On the other hand, an observer with enough telescope

Figure 4. Performance curves for high-z classifier. The top panel (a) com-
pares the fraction of bursts recommended for follow up and the fraction
requested from the classifier. The middle panel (b) shows the purity of the
burst sample selected for follow-up (the fraction of bursts that were fol-
lowed up that are actually at high redshift). The bottom panel (c) shows the
efficiency of the classifier (the fraction of all high-redshift bursts that were
followed up).

time to follow up 40 per cent of all GRBs will be able to find all
true high-z bursts (100 per cent efficiency).

4 MAC H IN E- z REDSHI FT ESTI MATO R

The high-z classifier developed in Section 3 helps to select the
highest priority follow-up targets, but it does not provide an actual
value for the predicted redshift. In this section, we adapt the methods
from Section 3 to solve a regression problem and develop an RF
based redshift estimator that we call machine-z.

4.1 Tuning the regressor

Since the performance of a regressor is evaluated differently from
a classifier, we performed an independent parameter search to ap-
proximately optimize input parameters of the RF regressor. For this
purpose, we used the ‘leave-one-out’ cross-validation method that
for N bursts consists of N runs with N − 1 instances used for training
and one for testing. We leverage the stochastic nature of RF train-
ing to increase the signal-to-noise ratio of the final cross-validated
performance estimate by repeating the process 10 times with

MNRAS 458, 3821–3829 (2016)
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Figure 5. Relative importance of machine-z regression features. The Pearson correlation coefficient is shown as a function of the next best feature starting
from the single best feature at the bottom of the plot. Features selected for the final machine-z estimation are shown in red.

different seeds. The quality of prediction is measured using the
Pearson correlation coefficient between machine-z output and true
redshift. Table 2 defines the search grid for approximate parameter
optimization. In this case, we found that a forrest of 100 fully de-
veloped trees (with as little as one burst per leaf node) and m = 5
random features per split provides the best results. This is different
from parameters adopted in Section 3.2. The resulting correlation
coefficient is 0.52.

4.2 Regression feature importance

Feature importance for machine-z is determined using a method
similar to Section 3.3 except for the objective function. The area
under the ROC curve is now replaced by the redshift correlation
coefficient. Until the number of selected input features reaches
m = 5 all features are randomized during node splitting. The relative
importance of various features is shown in Fig. 5. The correlation
coefficient starts from a sub-optimal value for the first feature, then
increases, eventually flattens after the 11th feature, and then slowly
decreases beyond 16th feature. We selected the first 11 features in
this plot as input features for the machine-z estimator. Adding fea-
tures beyond 11 does not improve predictions and increases the risk
of overfitting or diluting the signal with noisy features.

4.3 Correction for noise and imbalance

A comparison between machine-z predictions and true redshift for
GRBs in the training set is presented in Fig. 6. While there is a good
correlation between the predicted and the actual redshift, the range
of the output values is squeezed relative to the input. This appears

Figure 6. Comparison of uncorrected machine-z predictions with true red-
shift. The correlation coefficient between the two quantities is 0.57. The best
straight line fit is show in green.

to be a consequence of the interaction between noisy features and
the fact that high-redshift bursts are strongly underrepresented in
training data (see Fig. 1). When high-redshift bursts are given higher
weights (e.g. by including multiple copies of the same burst in
training data), the bias observed in Fig. 6 changes. A thorough
investigation of this behaviour is beyond the scope of this paper and
will be presented elsewhere. For this initial release of the algorithm,
we introduce a simple linear correction that shifts and stretches the

MNRAS 458, 3821–3829 (2016)
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Figure 7. Comparison of corrected machine-z predictions with true red-
shift. The correlation coefficient between the two quantities is 0.57.

Figure 8. Distribution of relative differences between machine-z predic-
tions and true redshifts.

range of the output redshift values while preserving the correlation
coefficient. The final corrected redshift predictions are computed
using a straight line fit to data in Fig. 6 and taking into account
the cross-validation uncertainty in machine-z output: zcorrected =
(zuncorrected − 1.07 ± 0.05)/(0.35 ± 0.03).

The final corrected machine-z predictions as a function of the
true redshift are shown in Fig. 7. The range of the output is now
similar to that of the input and the correlation coefficient is the same
as in Fig. 6.

There are several interesting trends to note in Fig. 7. First, the
lower right area of the plot is not populated. This means that in most
cases machine-z does not fail to recognize a high-redshift burst.
Secondly, the density of bursts peaks roughly along the dashed line,
so for a significant fraction of bursts the redshift estimate is close to
the true value. This can be seen more clearly in Fig. 8 showing the
distribution of the relative differences between machine-z estimates
and actual redshifts. Thirdly, the algorithm does occasionally predict
a high redshift for a low-z burst as shown by the upper-left portion
of the plot. Even though following up these false positives will tend
to waste some telescope time, machine-z will rarely miss the all-

Figure 9. Comparison of ROC curves for high-z classifier based on our
input data and feature set with Morgan et al. data and feature set. The area
under the ROC curve is 0.89 for this work and 0.84 for Morgan et al..

important high-z bursts. An inconvenient side effect of our simple
correction for the redshift bias is that for a few GRBs the predicted
redshift is negative. This is not a problem as long as the tool is used
to select high-redshift GRBs, as the negative predictions only occur
at low redshift.

5 D I SCUSSI ON

5.1 Comparison with previous work

Morgan et al. (2012) was the first to apply machine-learned classifi-
cation to screen high-redshift GRBs using promptly available Swift
data. We compared our GRB sample and feature set with the Mor-
gan et al. (2012) data available in machine readable form. Small
differences in the RF implementation between those two studies
have no bearing on this comparison. The ROC curves for the two
data sets are given in Fig. 9. The ROC curve corresponding to our
data set (red curve) has a slightly larger area than that for the Mor-
gan et al. (2012) data (blue curve). Note that the red curve rises to
100 per cent recall more rapidly than the blue curve.

Fig. 10 presents another performance comparison of the two data
sets. As shown by the top panel (a), there is no significant difference
in the fraction of bursts recommended for follow-up versus the
requested fraction. However, there is a significant difference in
the purity of the burst sample selected for follow-up shown in the
middle panel (b). Our high-z classifier returns samples of very high
purity when the fraction of bursts that can be observed is low. In
contrast with that, the Morgan et al. (2012) data set starts near
zero purity at low follow-up fractions and peaks at ≈ 60 per cent
around F = 10 per cent. Furthermore, the purity curve delivered by
high-z is similar in shape to the ideal purity curve and merges with
the ideal curve around the follow-up fraction F ≈ 35 per cent. By
comparison, the Morgan et al. (2012) data set shows a qualitatively
different shape and an undesirable very low purity at small follow-
up fractions. Finally, the bottom panel (c) in Fig. 10 compares
efficiency curves of the two data sets. Both curves show the expected
gradual rise from zero. The high-z data set presented here reaches
the curve corresponding to a perfect classifier around follow-up
fraction F ≈ 40 per cent. The Morgan et al. (2012) data set does not
reach the ideal curve until ≈80 per cent.
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Figure 10. Performance of high-z classification using our input data and
feature set compared to results based on the input data and feature set of
Morgan et al. (2012). The content of each panel is analogous to Fig. 4.

This difference in behaviour may be explained by a different
approach to integrating XRT and UVOT measurements with non-
detections. While the Morgan et al. (2012) classifier uses 12 fea-
tures, our high-z algorithm uses eight features. Some features such
as the XRT column density are common to both data sets. How-
ever, Morgan et al. (2012) use only one measurement from XRT
and only one feature from UVOT. The latter is limited to a yes or
no flag indicating the existence of a UVOT detection in any photo-
metric band. Our approach, by contrast, is to use multiple features
from XRT and utilize all available information on detections and
non-detections across all UVOT bands. As one can see from Fig. 2,
both detections and non-detections in various UVOT bands play an
important role in the high-z classifier.

5.2 Validation

The training data for our high-z classifier and machine-z estimator
is limited to GRBs discovered by Swift prior to 2015 for which a red-
shift measurement is available. In 2015, Swift found 22 additional
bursts that have a spectroscopic redshift. We used the 2015 sample
as a validation set to investigate the effectiveness of our redshift
prediction algorithms. The results for individual bursts in the test
sample are shown in Table 3. Two out of 22 bursts (GRB 151112A

and GRB 151027B) qualify as high redshift according to our classi-
fication in Section 2.1 (z > 4). Both algorithms flag them as having
high redshift. The Q scores for these two bursts also indicate that
follow-up is recommended if the requested follow-up fraction is at
least 20 per cent of all GRBs. In addition to these two clear cut cases,
our classifier identified eight other bursts in the validation sample as
high-z. However, out of those eight bursts only one (GRB 151111A)
has a machine-z estimate z > 4. There are also two low-z bursts
(GRB 151029A and GRB 150301B) with predicted redshifts above
4. These outcomes are consistent with our performance estimates
and confirm the usefulness of our tools in prioritizing follow-up
observations of candidate high-redshift GRBs. We can expect that
the most robust results will be obtained if both high-z classifier and
machine-z estimator predict high redshift. In this case, we would
have selected three candidate high-z bursts shown as grey rows in
Table 3, two real ones and a single false positive. Note that the false
positive (GRB 151111A) is a burst with an intermediate redshift
z = 3.5.

5.3 Extensions to other data sources

This paper addresses redshift prediction for Swift GRBs. Transfer-
ring a trained classifier from one data set to another is very im-
portant, but typically challenging. Unfortunately, in most cases the
performance is strongly degraded even if differences between data
sources are purely incidental (e.g. slightly different energy ranges
of flux measurements or different estimators of model parameters).
If the new features are qualitatively similar to the old ones, one
can shift and rescale the numbers to approximately match the dis-
tribution of each new and old feature. This requires only a modest
amount of new data and may be a productive approach for future
missions similar to Swift including Space-based multiband astro-
nomical Variable Objects Monitor (SVOM; Cordier et al. 2015). In
other cases, we are forced to build new training sets and that can be
time consuming.

Another possible approach would be to consider lower level data
such as time-resolved spectra of prompt GRB emission. Generic in-
termediate level features can be obtained for example from wavelet
analysis that captures the intrinsic structure of the data and then ap-
ply a high-level classifier such as RF (Ukwatta & Wozniak 2016).
Those ‘abstract’ features may prove more transferable from one data
set to another and may eventually facilitate early redshift prediction
for GRBs detected by future missions such as SVOM.

6 SU M M A RY

We presented a method for selecting candidate high-redshift GRBs
that can be used to prioritize follow-up observations. The algorithm
utilizes numerical and categorical features from all three instru-
ments onboard the Swift satellite that are readily available within
the first few hours after a GRB discovery. We independently de-
veloped high-z classification and machine-z regression tools based
on algorithms and features tailored to each task. A subset of fea-
tures that provides most information to support redshift prediction
was identified in both cases. The results were validated using a
small sample of recently discovered GRBs that were not included
in training data. The most robust selection of high-redshift bursts is
achieved by combining the classification and regression output to
make the final prediction.
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Table 3. Validation sample: GRBs discovered in 2015 by Swift with redshift measurements. Grey rows mark
candidate high-z bursts selected by both high-z classifier and machine-z estimator.

GRB Redshift Machine-z High-z? Score (Q value)

151112A 4.1 5.47 ± 0.56 True <17.1
151111A 3.5 4.81 ± 0.59 True <7.5
151031A 1.17 3.05 ± 0.39 True <22.8
151029A 1.42 6.1 ± 0.71 False <64.8
151027B 4.06 5.2 ± 0.59 True <7.3
151027A 0.81 0.32 ± 0.21 False <91.5
151021A 2.33 3.69 ± 0.38 True <12.4
150915A 1.97 1.38 ± 0.39 False <55.3
150910A 1.36 2.7 ± 0.41 False <55.7
150821A 0.76 1.37 ± 0.34 True <12.3
150818A 0.28 0.34 ± 0.2 False <56.2
150727A 0.31 1.13 ± 0.3 False <40.2
150424A <3.0 − 0.28 ± 0.18 False <47.3
150423A 1.39 − 0.26 ± 0.21 True <4.5
150413A 3.2 0.75 ± 0.29 False <36.8
150403A 2.06 2.36 ± 0.33 False <62.9
150323A 0.59 3.81 ± 0.38 True <29.1
150314A 1.76 2.99 ± 0.43 False <31.8
150301B 1.52 6.06 ± 0.78 False <39.8
150206A 2.09 2.81 ± 0.39 False <35.3
150120A 0.46 0.81 ± 0.26 False <74.2
150101B 0.09 0.71 ± 0.35 False <73.9
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